Классный урок на «Радио России – Тамбов», эфир 15 мая 2020 года

В уроке химии для девятиклассников кандидат технических наук, учитель химии из 29-го тамбовского лицея Елена Эдуардовна Дегтерева рассказывает о способах получения, физических и химических свойствах алюминия.
Алюминий. Получение алюминия. Физические и химические свойства. Применение. Сегодня я хочу рассказать о самом распространённом металле в земной коре, о алюминии. Алюминий по распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Элемент алюминий расположен в III группе, главной подгруппе, 3 периоде периодической системы, порядковый номер 13, относительная атомная масса Ar(Al) → 27. Название элемента образовано от латинского алюмен, так в древности называли квасцы, которые использовали для крашения тканей. Данный элемент носил несколько названий. Так, английский химик и физик Гемфри Дэви, предполагая присутствие его в глиноземе, называл алюминумом. В русской химической литературе 19 века встречаются следующие названия алюминия: глинозем, алумий, алюминий и глиний. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера, т. е. он является переходным элементом и его соединения являются амфотерными. Давайте вспомним, что такое амфотерность. Амфотерность (от др.-греч. ἀμφότεροι «двойственный; обоюдный») — способность химических соединений проявлять в зависимости от условий как кислотные, так и основные свойства. Аl является р-элементом на внешнем уровне его электронной оболочки три электрона. В основном состоянии 2 эл. на 3s-подуровне и 1 эл. на 3р. В возбужденном состоянии на внешнем уровне алюминия находится три неспаренных электрона. Поэтому в соединениях с ковалентной связью алюминий проявляет валентность равную III. Нахождение в природе В природе алюминий в связи с высокой химической активностью встречается почти исключительно в виде соединений. Процент содержания алюминия в земной коре составляет 8,13% массы земной коры. Совместно с кремнием он образует такие известные вам породы и минералы, как алюмосиликаты, слюду, глину. Особое место среди минералов занимает криолит Na3[AlF6] (гексафторалюминат натрия), без которого алюминий вряд ли был вторым после железа по значению металлом. Почему? Об этом мы узнаем чуть позже. Целая группа природных веществ в качестве основного компонента содержит оксид алюминия: это бокситы – основное сырьё для производства алюминия; корунд – одно из самых твёрдых природных веществ. Его мелкокристаллические непрозрачные разновидности серовато-чёрного цвета называют наждаком и применяют в качестве абразивного материала. Эту же формулу имеет и другое природное соединение — глинозём. Наиболее драгоценными корундами являются рубины и сапфиры. Их окраска обусловлена различными примесями. Так, ион Сr3+ придаёт камню красный цвет (рубин), а ионы Тi 4+, Fe2+, Fe3+ придают синий цвет (сапфир). Эти разновидности благородного корунда наряду с алмазом и изумрудом занимают высшее место в классификации драгоценных камней и применяют для изготовления ювелирных изделий. В настоящее время рубины и сапфиры получают искусственно и используют для технических целей, например, для изготовления деталей часов и других точных приборов. Кристаллы рубинов применяют в лазерах. Получение алюминия Каждый из нас держал в руках изделия из алюминия, так как сейчас из этого металла делают множество приборов, корпуса телефонов, посуду и многое другое. Такую распространённость в наше время алюминий получил благодаря своей лёгкости, прочности и высокой устойчивости к коррозии (к окислению на воздухе). Однако так было не всегда. С начала открытия алюминия датским физиком Хансом Эрстедом в 1825 году и до конца 19 века ещё не было известно о простом получении его из руды и поэтому алюминий получали восстановлением из его хлорида щелочными металлами калием или натрием. Такой способ был очень дорог, а полученный металл стоял дороже золота.  В 18-19 веках алюминий был главным ювелирным металлом. Так в 1889 г. британцы, желая почтить богатым подарком великого русского химика Д.И. Менделеева, подарили ему весы из золота и алюминия. С конца 19 века и по сей день Al получают методом электрометаллургии из оксида алюминия, содержащегося в глинозёме и бокситах. Кристаллическая решётка оксида алюминия состоит из сильно поляризованных атомов алюминия и кислорода, силы притяжения между которыми весьма велики. Это обуславливает высокую температуру плавления оксида алюминия – около 2050 оС. Сложность достижения такой высокой температуры и энергоемкость процесса долгое время относили алюминий к числу труднодоступных металлов. В конце XIX века американский студент –химик Чарльз Мартин Холл обнаружил, что глинозём можно растворить при 950 оС в расплавленном минерале криолите (вот почему он важен для получения алюминия) и электролизом выделить из полученного раствора алюминий. Независимо от Мартина Холла в том же году это открытие сделал французский металлург Поль Луи Туссен Эру. Для того, чтобы иметь более точное представление об электролизе Al2O3 в криолите Na3AlF6 , необходимо уточнить схему электролитической диссоциации Al2O3. Как же он диссоциирует ? Мы знаем, что гидроксид алюминия Al(ОН)3 обладает амфотерными свойствами и его кислотную форму можно представить в виде ортоалюминиемой кислоты Н3AlO3. Этой кислоте соответствует алюминат анион AlO33-. Формулу алюминиемой соли этой кислоты можно записать AlAlO3. Так ведь это и есть оксид алюминия. Таким образом, в расплаве криолита он диссоциирует, на катион металла и анион кислотного остатка. Поэтому на катоде (отрицательно заряженном электроде) идёт восстановление катиона Al3+ до свободного металла. Катод (-): Al3+ +3е = Al На графитовом аноде (положительно заряженном электроде) окисляется алюминат анион AlO33-. При этом происходит следующий электродный процесс: Анод(+): 4AlO33- -12 е = 2Al2O3 + 3O2 При суммировании левых и правых частей электродных процессов получается молекулярное уравнение электролиза: Процесс проводят в специальных электролитических ваннах, которые одновременно являются катодом. Анодом служат угольные брикеты. Температуру плавления криолита в электролизёре поддерживают благодаря очень большой силе тока, которая достигает 250 кА при напряжении около 4 В. Очевидно, что получение алюминия – очень энергоемкий процесс. Кислород, выделяющийся на аноде, реагирует с углеродом, превращаясь в СО2. При этом угольный анод постепенно «сгорает». Физические свойства алюминия Алюминий как простое вещество представляет собой серебристо-белый металл, достаточно лёгкий (плотность 2,7 г/см3) и относительно легкоплавкий (на бытовой газовой плите с температурой пламени 850оС алюминиевый чайник расплавится, так как температура плавления его 660 оС). На воздухе поверхность металла покрыта тонкой, но очень прочной оксидной плёнкой, предохраняющей его от дальнейшего окисления. Алюминий очень пластичен, его можно прокатывать в фольгу толщиной 0,001 мм. По электро- и теплопроводности он уступает лишь серебру и меди. По сравнению с перечисленными металлами алюминий дешевле. Казалось бы, вот замечательный материал для изготовления высоковольтных линий электропередач! Но мягкость и пластичность алюминия привели бы к тому, что через год под собственной тяжестью провода провисли бы до земли. Поэтому в технике, где требуется и прочность конструкции, наряду с лёгкостью и высокой электропроводностью, используют не чистый алюминий, а его сплавы (например с магнием, марганцем, медью и никелем - дюралюминий или с кремнием – силумин). Рассмотрим химические свойства алюминия. В электрохимическом ряду напряжений металлов алюминий близок к щелочным и щелочноземельным металлам и проявляет себя как химически активный металл. В некоторых случаях от протекания возможных при нормальных условиях реакций (например с водой) его спасает оксидная плёнка. В химических реакциях он проявляет восстановительные свойства. Для алюминия во всех соединениях характерна единственно возможная степень окисления +3. Порошкообразный алюминий легко взаимодействует с простыми веществами (неметаллами).
  1. С галогенами (с такими как Cl2 и Вr2). Реакция протекает бурно при комнатной температуре:
2Al + 3Сl2 → 2AlСl 3 хлорид алюминия 2Al + 3 Вr2 → 2AlВr2 бромид алюминия Очень интересно протекает реакция алюминия с йодом. Если смешать порошок алюминия и йода то реакция не начнётся, для инициации реакции в смесь добавляют каплю воды, от которой происходит смачивание компонентов и смесь загорается сама собой с выделением фиолетового дыма из паров йода, таким образом вода в этой реакции является катализатором.
  1. Для начала реакции с другими неметаллами (с S, C, N2, Р), требуется нагревание, зато дальнейшее взаимодействие, сопровождается выделением большого количества теплоты.
При этом образуются бинарные соединения 2Al + 3S → Al2S3 сульфид алюминия 4Al + 3C → Al4C3 карбид алюминия 2Al +N2 → 2AlN нитрид алюминия Al + P → AlP фосфид алюминия
  1. С водородом Al непосредственно не реагирует.
При нагревании на воздухе алюминий окисляется с поверхности, не загораясь, и образуется оксид алюминия Al2O3. 4Аl + 3O2 = 2Al2O3 +Q Алюминий соединяется с кислородом воздуха и при обычной температуре, на его поверхности тотчас образуется тончайшая, плотная плёнка, она трудно проницаема для кислорода и предохраняет металл от дальнейшего окисления. Если же сильно нагреть фольгу алюминия или порошок алюминия, то они воспламеняются и сгорают ослепительным пламенем. Способность порошка алюминия гореть ослепительным пламенем используется в пиротехнике – производстве бенгальских огней, салютов, фейерверков. Алюминий реагирует со сложными веществами:  1.Так очищенный от оксидной плёнки алюминий способен реагировать с водой. От защитной плёнки можно избавиться механически (очистив поверхность наждачной бумагой) и химически, погрузив алюминий на несколько минут в раствор кислоты, щёлочи или в жидкую ртуть. В результате реакции с водой образуется гидроксид алюминия и водород. 2Al + 6H2O = 2Al(OH)3 + 3H2
  1. Одно из важнейших химических свойств алюминия – способность вытеснять металлы из их оксидов – используют в металлургии. Этим способом получают хром, железо, марганец, ванадий, титан, цирконий. Этот метод получения простых веществ металлов называется алюмотермией:
2Al + Cr2O3 = Al2O3 + 2Cr Для получения высоких температур, используют реакцию, сгорания термитной смеси - смеси оксида железа (II и III) и порошка алюминия: 8Al + 3Fe3O4 =4 Al2O3 + 9Fe Выделяющейся в этой реакции теплоты достаточно для расплавления получающегося железа, потому этот процесс используют для сварки и резки стальных изделий. 3. Как активный металл алюминий реагирует с растворами кислот с выделением водорода. 2Al + 6HCl = 2AlCl3 + 3H 2Al + 3H2SO4(разб.) = Al2(SO4)3 + 3H2 А вот концентрированные серная и азотная кислоты пассивируют алюминий при обычной температуре, образуя на поверхности металла, прочную оксидную плёнку, которая препятствует дальнейшему протеканию реакции. Поэтому эти кислоты перевозят в алюминиевых цистернах. С разбавленной азотной кислотой алюминий реагирует с образованием оксида азота (II): Al + 4HNO3(разб.) = Al(NO3)3 + N­O↑ + 2H2O При нагревании Al растворяется в кислотах — окислителях, образующих растворимые соли алюминия: 2Al + 6H2SO4(конц) = 4Al2(SO4)3 + 3SО2↑ + 6H2O Al + 6HNO3(конц) = Al(NO3)3 + 3NO2­ + 3H2O
  1. Алюминий – амфотерныйметалл, поэтому он взаимодействует со щелочами.
При нагревании с конц. растворами щелочей алюминий образует комплексные соли (тетрагидроксоалюминаты), при этом выделяется водород. 2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2 Применение Большую часть производимого алюминия (его производство в мире стоит на 2-м месте после выплавки чугуна и стали) используют для производства сплавов. Они легки, относительно прочны, электропроводны, коррозионноустойчивы, поэтому находят широкое применение в различных областях техники и быту. Сплавы алюминия используют в самолёто- и ракетостроении. Недаром алюминий называют крылатым металлом. Алюминий используют для получения металлов, методом алюмотермии. В строительстве: гофрированными листами алюминиевых сплавов покрывают крыши, а также строят из них различные складские помещения. Высокая электрическая проводимость чистого алюминия используется в электротехнике. Из сплавов алюминия изготовляют электропровода. Порошок алюминия сохраняет металлический блеск и используется как краска «серебрянка». Она не только придает красивый внешний вид изделиям и сооружениям, но и защищает их от химического разрушения. Для защиты от солнечных лучей алюминиевой краской покрывают цистерны, предназначенные для перевозки нефтепродуктов и других горючих веществ. Исследуя влияние алюминия на различные пищевые продукты, ученые установили, что при контакте пищи с алюминием не разрушаются витамины. Это открытие послужило причиной широкого применения алюминия в пищевой промышленности, в виде посуды из алюминия, а также в косметике и бытовой химии. Из алюминия изготавливают разнообразную аппаратуру, предназначенную для переработки пищевых продуктов в сахарной, кондитерской, маслобойной и других отраслях промышленности. Сегодня на уроке мы узнали об алюминии: положение этого элемента в Периодической системе, строение его атома, нахождение в природе, физические и химические свойства металла алюминия, получение и применение алюминия.

Оцените статью

Узнавайте о новых публикациях как вам удобнее:

ВЕСТИ / Тамбов